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INTRODUCTION

We describe a lattice statics Green’s function (LSGF) method for modeling of
dislocation in crystal lattices. The LSGF method was originally developed for point
defects [1]. It has been applied [2,3] to small cracks consisting of 10-50 atoms but, so far,
it has not been possible to use this method for large defects such as dislocations or cracks
involving several hundred or more atoms [4]. In this paper, we describe a defect space
Fourier transform method that enables us to apply the LSGF method to extended defects.
This paper essentially describes our work in progress. Only the methodolgy and some
preliminary results are reported here. Details will be published elsewhere.

The LSGF method is based upon the Kanzaki method and uses the Fourier
representation of the perfect Green’s function. Consequently it is possible to model a large
crystallite containing several million atoms within a small CPU effort. Alternative methods
for modeling dislocations use direct computer simulation based upon molecular dynamics
[5, 6] or quasicontinuum [7]. Both these methods are very powerful and have important
advantages. The advantage of the LSGF method is that it gives semi-analytical results for
large crystallites and is useful for a quick determination of the basic physical
characteristics of the defects. It is also useful for providing starting estimates for a detail
calculation using massive computer simulation of complicated defect structures.

BASIC FORMULATION

We consider a monatomic Bravais lattice. We assume a Cartesian frame of
reference with an atomic site as origin. We denote the lattice sites by vector indices l, l’
etc. The 3d force constant matrix between atoms at l and l’ is denoted by φφ∗∗(( l, l’).). The
force on atom l  and its displacement from equilibrium position will be denoted,
respectively, by F(l) and u(l), which are 3d column vectors.

Following the method given in [1,2], we obtain

u(l)  =  Σ G*(( l, l’) ) F(l’), (1)   

where, the defect Green’s function,

G*  =  [φφ∗∗]]−1−1 .       .      (2)

The sum in eq. (1) is over all lattice sites and Cartesian coordinates which has not been
explicitly shown for brevity.
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In the representation of the lattice sites, G* and φφ∗∗ are 3N x  3Ν  matrices where N
is the total number of lattice sites in the Born von Karman supercell. For a perfect lattice
in equilibrium without defects, F(l) is 0 for all l and the force constant and the Green’s
function matrices have translation symmetry. We denote these matrices by φφ and G
respectively. When a defect is introduced in the lattice, F(l) becomes, in general, non-zero
and the force constant matrix changes.  So,

φφ∗∗ =  φ − ∆ φ,  =  φ − ∆ φ, (3)

where ∆φ ∆φ  denotes the change in the φ. φ. From eq. (3), we obtain the following Dyson
equation

G* = G + G ∆φ ∆φ G*, (4)

where

G  =  [φ]φ]−1−1, , (5)

is the perfect lattice Green’s function.

For the perfect lattice, G is calculated by using the Fourier representation

G(l,l’) = (1/N) Σq G(q) exp[iq.(l-l’)], (6)

where

G(q)  =  [φφ(q)]−1,    (7)

φφ(q) is the Fourier transform of the force constant matrix and q is a vector in the
reciprocal space of the lattice. For brevity of notations, we shall use the same symbol for a
function and its Fourier transform, the distinguishing feature being the argument of the
function. Since G(q) and φφ(q)  are 3 x 3 matrices, eqs. (9) and (10) can be used to
calculate the G(l,l’).

We define the defect space as the vector space generated by l,l’ for which  ∆φ is
non-vanishing. The lattice sites in the defect space will be denoted by λ,λ’. We partition
the matrices in eq. (4), and take only their components in the defect space. The Dyson
equation in defect space is given by

    g* = g + g ∆φ ∆φ g*,      (8)

where g, g* are components of G and G* in defect space. The matrices in eq. (8) are 3n x
3n matrices, where n is the number of atoms in the defect space. For point defects, n is
small, so eq. (12) can be solved by direct matrix inversion. For extended defects such as
dislocations, cracks, etc., n is quite large. In earlier calculations, eq. (8) is solved
numerically by restricting n to less than 50. In the computer simulation work, n is taken to
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Fig. 1: Defect space for an edge dislocation dipole. Unrelaxed lattice sites are
indicated by solid circles. Vacancies are created at sites marked by rectangles
covering circles. The defect space consists of all sites inside the dashed rectangle.
The end space in this model consists of sites 0,0’,0”, and n,n’,n”. The dotted
circles show the relaxed positions of the atoms 1-4 calculated using the model
given in [3]. The relaxation of other atoms is not shown.

be of the order 10-50, with N to be 50-100, which requires huge CPU effort. In the
conventional LSGF method for cracks [3], although N can be 100-1000, n is typically less
than 50. These values are unrealistically low. We show that by taking Fourier transform in
the defect space, we can solve eq. (8) for n=1000 or larger with minimal CPU effort.
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Defect space Fourier transform method

We assume that the atoms interact through pair potentials and the interatomic
potential is short range. This is a reasonable assumption since even the embedded atom
potential that accounts for multibody interactions, can be expressed into an effective
dominant short range pair potential. For simple straight dislocations or planar cracks, the
defect space has translation symmetry except near the ends. We exploit this translation
symmetry in the defect space Fourier transform (DSFT) method for partially diagonalizing
the Dyson equation.

Consider an edge dislocation. Although the DSFT method is applicable to 3d, for
the sake of illustration in the present paper, we consider an infinite straight dislocation that
makes the problem 2d. Following Volterra’s construction, we create a half plane of
vacancies, pull the atoms across the vacancy plane together by a distance uc and bond
them. Then we allow  the lattice to relax to its new equilibrium position.

Figure 1 illustrates the model. Instead of a single edge dislocation, we create a
dislocation dipole so that the sum of all forces in the lattice is 0. A single dislocation
implies unbalanced forces at the ends which makes the lattice unstable and introduces
singularity in the displacement field. Atoms 1 - 4 are the created vacancies. The defect
space includes all atoms in the box, 0-n, 0’-n’, and 0”-n”. Notice that the defect space has
translation symmetry except for the end atoms, 0,1, 4,n, and the corresponding primed and
double primed atoms.

The displacement field for atoms in the defect space is given by

u(λλ )=  uc + v(λ)λ) (9)

where uc constant for  all λλ. We determine uc by a minimization procedure and v by
solving the Dyson equation. The determination of uc includes nonlinear effects.  We
assume  v(λλ ) to be small and neglect cubic and higher order terms in v.

We write

∆φ(λ,λ∆φ(λ,λ’) =  ∆φ∆φ00(λ,λ(λ,λ’) − δφ(λ,λδφ(λ,λ’), (10)

F(λ)(λ) =  F0 +  + f(λ)(λ), (11)

where F0 and ∆φ∆φ00(λ,λ(λ,λ’) are have translation symmetry. Hence, F0 is independent of λλ and
∆φ∆φ00(λ,λ(λ,λ’) depends upon λλ, and λλ’ only through their difference. The end correction is
given by f(λ)λ) and  δφ(λ,λδφ(λ,λ’) which are non-vanishing only for atoms at the ends of the
defect space. The atomic sites at the ends constitute the end space.

We introduce Fourier transforms in the defect space as follows

∆φ∆φ00(λ,λ(λ,λ’)=(1/n)Σk ∆φ∆φ00((k) exp[ik.( λ−λ λ−λ’)] (12)

g(λ,λ(λ,λ’)=(1/n) Σk g((k) exp[ik.( λ−λ λ−λ’)] (13)
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where k takes n values between - π and + π such that k.λλ(n) is a multiple of π. The DSFT
of the Green’s function is given by

g(( k) = Σλλ   g((0, λ λ) exp(ik.λλ), (14)
or

g(( k)  = (1/N) Σq  G(q) M(k,q), (15)

where M is a projection function that projects the Green’s function from the reciprocal
space of the lattice to that of the defect space. It is given by

M(k,q) = Σλλ exp[i(k-q). λλ]. (16)

In general, the lattice sum in eq. (16) can be obtained analytically. It gives a discrete
analogue of the Hilbert transform.

Using eq. (10) in eq. (8), and partitioning the matrix in the end space, we obtain
for the Dyson equation in the end space

g* = gd – gd δφ δφ g* (17)

where

 gd =  [I - g ∆φ∆φ00]−1 g (18)

We evauate gd using DFST given by eqs. (12) and (13) and then solve eq. (17) in the
defect space by using matrix partitioning technique [1].

Results of a preliminary calculation are shown in Fig. 1. For these calculations, we
assumed the same force constant model as given in [3]. Only the displacement field for
atoms 1-4 in the defect space has been shown in Fig. 1. The displaced positions of these
atoms are shown as dotted circles.

CONCLUSIONS

To summarize, the main advantage of the LSGF method using DSFT is that it is
semianalytic which allows to model  large crystallites and large defects with minimal CPU
effort - even for 3d dislocation problems. It can account for nonlinear effects locally in the
defect space but assumes the harmonic approximation for atoms outside the defect space.
Since the method involves independent sums over q and k space, the the computational
program can be easily vectorized if needed. The main disadvantage of our method is that it
can not give time evolution of the equilibrium and is limited to simple defect structures.



6

REFERENCES

1. V. K. Tewary, Green’s function method for lattice statics, Adv. Phys. 22, p757 (1973).
2. R. Thomson, S.J. Zhou, A.E. Carlsson, and V.K. Tewary, Lattice imperfections studied
by use of lattice Green’s functions, Phys. Rev. B46, p 10613 (1992).
3. V.K. Tewary and R. Thomson, Lattice statics of interfaces and interfacial cracks in
bimaterial solids, J. Mater. Res. 7, p1018 (1992).
4. A.E. Carlsson and R. Thomson, Fracture toughness of materials: From atmomistics to
continuum theory, Solid State Physics  51, p233 (1998).
5. P. Vashishta, A. Nakano, R.K. Kalia, et. al. Crack propagation and fracture in ceramic
films- Million atom molecular dynamics simulations on parallel computers, Mat. Sci. Eng.-
Solids B37, p56 (1996).
6. R. Pasianot, D. Farkas, and E.J. Savino, Dislocation core structure in ordered
intermetallic alloys, J. Physique III 1, p997 (1991).
7. E.B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids,
Phil. Mag. A73, p1529 (1996).


